Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.172
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456309

RESUMO

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Assuntos
Substitutos Ósseos , Quitosana , Apatitas/farmacologia , Apatitas/química , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Durapatita , Quitosana/farmacologia , Quitosana/química , Difração de Raios X , Força Compressiva
2.
Adv Healthc Mater ; 13(5): e2302664, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902817

RESUMO

Inorganic nanoparticulate biomaterials, such as calcium phosphate and bioglass particles, with chemical compositions similar to that of the inorganic component of natural bone, and hence having excellent biocompatibility and bioactivity, are widely used for the fabrication of synthetic bone graft substitutes. Growing evidence suggests that structurally anisotropic, or 1D inorganic micro-/nanobiomaterials are superior to inorganic nanoparticulate biomaterials in the context of mechanical reinforcement and construction of self-supporting 3D network structures. Therefore, in the past decades, efforts have been devoted to developing advanced synthetic scaffolds for bone regeneration using 1D micro-/nanobiomaterials as building blocks. These scaffolds feature extraordinary physical and biological properties, such as enhanced mechanical properties, super elasticity, multiscale hierarchical architecture, extracellular matrix-like fibrous microstructure, and desirable biocompatibility and bioactivity, etc. In this review, an overview of recent progress in the development of advanced scaffolds for bone regeneration is provided based on 1D inorganic micro-/nanobiomaterials with a focus on their structural design, mechanical properties, and bioactivity. The promising perspectives for future research directions are also highlighted.


Assuntos
Substitutos Ósseos , Nanoestruturas , Tecidos Suporte/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Regeneração Óssea , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química
3.
J Biomed Mater Res A ; 112(3): 473-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37962005

RESUMO

Hydroxyapatite (HA) is commonly used as a bone substitute material, but it lacks mechanical strength when compared to native bone tissues. To improve the efficacy of HA as a bone substitute by improving the mechanical strength and cell growth attributes, porous composite scaffolds of HA and titania (HA-TiO2 ) were fabricated through a freeze-casting process. Three different compositions by weight percent, 25-75 HA-TiO2 , 50-50 HA-TiO2 , and 75-25 HA-TiO2 , were custom-made for testing. After sintering at 1250°C, these composite scaffolds exhibited improved mechanical properties compared to porous HA scaffolds. Substrate mixing was observed, which helped reduce crystal size and introduced new phases such as ß-TCP and CaTiO3 , which also led to improved mechanical properties. The composition of 50-50 HA-TiO2 had the highest ultimate compressive strength of 3.12 ± 0.36 MPa and elastic modulus 63.29 ± 28.75 MPa. Human osteoblast cell proliferation assay also increased on all three different compositions when compared to porous HA at 14 days. These results highlight the potential of freeze casting composites for the fabrication of bone substitutes, which provide enhanced mechanical strength and biocompatibility while maintaining porosity.


Assuntos
Substitutos Ósseos , Durapatita , Titânio , Humanos , Durapatita/química , Substitutos Ósseos/química , Tecidos Suporte/química , Teste de Materiais , Porosidade
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929804

RESUMO

Effective bone substitute biomaterials remain an important challenge in patients with large bone defects. Glass ceramics produced by different synthesis routes may result in changes in the material physicochemical properties and consequently affect the success or failure of the bone healing response. To investigate the differences in the orchestration of the inflammatory and healing process in bone grafting and repair using different glass-ceramic routes production. Thirty male Wistar rats underwent surgical unilateral parietal defects filled with silicate glass-ceramic produced by distinct routes: BS - particulate glass-ceramic produced via the fusion/solidification route, and BG - particulate glass-ceramic produced via the sol-gel route. After 7, 14, and 21 days from biomaterial grafting, parietal bones were removed to be analyzed under H&E and Massons' Trichome staining, and immunohistochemistry for CD206, iNOS, and TGF-ß. Our findings demonstrated that the density of lymphocytes and plasma cells was significantly higher in the BS group at 45, and 7 days compared to the BG group, respectively. Furthermore, a significant increase of foreign body giant cells (FBGCs) in the BG group at day 7, compared to BS was found, demonstrating early efficient recruitment of FBGCs against sol-gel-derived glass-ceramic particulate (BS group). According to macrophage profiles, CD206+ macrophages enhanced at the final periods of both groups, being significantly higher at 45 days of BS compared to the BG group. On the other hand, the density of transformation growth factor beta (TGF-ß) positive cells on 21 days were the highest in BG, and the lowest in the BS group, demonstrating a differential synergy among groups. Noteworthy, TGF-ß+ cells were significantly higher at 21 days of BG compared to the BS group. Glass-ceramic biomaterials can act differently in the biological process of bone remodeling due to their route production, being the sol-gel route more efficient to activate M2 macrophages and specific FBGCs compared to the traditional route. Altogether, these features lead to a better understanding of the effectiveness of inflammatory response for biomaterial degradation and provide new insights for further preclinical and clinical studies involved in bone healing.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Humanos , Ratos , Animais , Masculino , Teste de Materiais , Ratos Wistar , Materiais Biocompatíveis/química , Regeneração Óssea , Substitutos Ósseos/química , Cerâmica/farmacologia , Cerâmica/química , Macrófagos , Fator de Crescimento Transformador beta , Vidro/química
5.
Biomed Mater Eng ; 35(1): 13-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37599515

RESUMO

BACKGROUND: Inspired by natural bones, many organic components were added to Calcium Phosphate Cements (CPCs) to improve their mechanical strength. However, the strength of these composite CPCs is limited by the low strength of organic components itself and the weak interaction between organic components and CPCs. OBJECTIVE: Firstly, a composite CPC containing mussel-inspired adhesive, Poly-(Dopamine Methacrylamide-co-2-methoxy Ethylacrylate) (pDM) was developed. Secondly, the interactions between pDM and CPC and their effect on mechanical properties were investigated. METHODS: The interactions between pDM and CPC were performed by Nuclear Magnetic Resonance, Laser Raman, X-ray Photoelectron Spectroscopy, Fourier Transform-Infrared Spectroscopy and X-ray Diffraction Analysis. RESULTS: The toughness and compressive strength of pDM-CPC scaffold were both significantly enhanced, because of the enhanced interface binding strength among CPC and pDM due to their interaction and the improved mechanical strength of pDM owing to its self-oxidation cross-linking. The toughness of pDM-CPC scaffolds increased with the increased contents of pDM, while pDM-CPC scaffold containing 35 wt.% pDM had the highest compressive strength of all, which the latter was more than five times compared to that of CPC. CONCLUSION: The mechanically strong pDM-CPC scaffolds has potential application in bone regeneration as well as in craniofacial and orthopedic repair.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Força Compressiva , Osso e Ossos , Cimentos Ósseos/química , Teste de Materiais
6.
J Control Release ; 365: 848-875, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37734674

RESUMO

Unmet medical needs in treating critical-size bone defects have led to the development of numerous innovative bone tissue engineering implants. Although additive manufacturing allows flexible patient-specific treatments by modifying topological properties with various materials, the development of ideal bone implants that aid new tissue regeneration and reduce post-implantation bone disorders has been limited. Natural biomolecules are gaining the attention of the health industry due to their excellent safety profiles, providing equivalent or superior performances when compared to more expensive growth factors and synthetic drugs. Supplementing additive manufacturing with natural biomolecules enables the design of novel multifunctional bone implants that provide controlled biochemical delivery for bone tissue engineering applications. Controlled release of naturally derived biomolecules from a three-dimensional (3D) printed implant may improve implant-host tissue integration, new bone formation, bone healing, and blood vessel growth. The present review introduces us to the current progress and limitations of 3D printed bone implants with drug delivery capabilities, followed by an in-depth discussion on cutting-edge technologies for incorporating natural medicinal compounds embedded within the 3D printed scaffolds or on implant surfaces, highlighting their applications in several pre- and post-implantation bone-related disorders.


Assuntos
Substitutos Ósseos , Humanos , Substitutos Ósseos/química , Tecidos Suporte/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Osso e Ossos , Regeneração Óssea
7.
Biomater Adv ; 157: 213731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103399

RESUMO

In the realm of regenerating damaged or degenerated bones through minimally invasive techniques, injectable materials have emerged as exceptionally promising. Among these, calcium phosphate bone cements (CPCs) have garnered significant interest due to their remarkable bioactivity, setting it apart from non-degradable alternatives such as polymethyl methacrylate cements. α-Tricalcium phosphate (α-TCP) is a widely used solid phase component in CPCs. It can transform into calcium-deficient hydroxyapatite (CDHAp) when it comes in contact with water. In this study, we aimed to create an injectable, self-setting bone cement using low-temperature synthesized α-TCP powder as a single precursor of the powder phase. We found that changes in the pH of the liquid phase (pH 6.0, pH 6.2, pH 7.0 and pH 7.4) significantly altered the cement's setting, handling, and mechanical properties. The formation of the octacalcium phosphate (OCP) phase was identified in our study, which positively affects the osteoblastic cell response. Hardened OCP-forming bone cements prepared using a liquid phase with pH 7.0 and 7.4 showed better osteogenic cell attachment and proliferation than those prepared with pH 6.0 and 6.2. Our study suggests that changes in the pH of the liquid phase can significantly affect the properties of α-TCP-based bone cement, and the presence of the OCP phase is crucial for optimal cement performance.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Pós , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Durapatita/farmacologia
8.
Med Sci Monit ; 29: e941112, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37872747

RESUMO

BACKGROUND The regeneration of bone defects is indicated to restore lost tissue mass and functionality. Ostim®, an absorbable nanocrystalline hydroxyapatite (NCHA) paste, is indicated to enhance bone regeneration in bone defects due to trauma or surgery. This retrospective study of 110 patients with long-bone fracture defects presenting at a single trauma center between 2010 and 2012 aimed to compare outcomes with and without the use of Ostim® absorbable nanocrystalline hydroxyapatite paste. MATERIAL AND METHODS The study encompassed fractures in 110 patients - 55 patients received any defect augmentation (ED) and 55 patients were treated with NCHA augmentation. Fractures were located at the distal radius (66.4%, n=73), proximal humerus (5.5%, n=6), and proximal tibia (28.2%, n=31). Evaluating the clinical follow-up, the study encompassed post-surgery complications (eg, non-unions, infection). Bone healing was evaluated by conventional radiographs. RESULTS Postoperative complications occurred in 45.5% of patients regardless of the treatment (P=1.0). The non-union rate in both groups was 5.5% (n=8, P=1.0), and the risk for infection was lower in the NCHA group (3.6%, ED: n=3, NCHA: n=1, p=0.62). Patients suffered open fractures were treated in the NCHA group (100%, n=7, P=0.003). Radiological assessment demonstrated comparable healing of the fracture border, fracture gap, and articular surface (P>0.05). CONCLUSIONS The findings from this retrospective study support previous studies that have shown Ostim® absorbable nanocrystalline hydroxyapatite paste enhances outcomes and reduces the risk of complications when used to repair bone defects in long-bone fractures in trauma patients. NCHA paste augmentation is suitable for use in traumatic long-bone fractures.


Assuntos
Substitutos Ósseos , Fraturas Ósseas , Humanos , Estudos Retrospectivos , Substitutos Ósseos/uso terapêutico , Substitutos Ósseos/química , Estudos de Casos e Controles , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/cirurgia , Durapatita/uso terapêutico , Durapatita/química , Consolidação da Fratura , Resultado do Tratamento
9.
Tissue Eng Regen Med ; 20(7): 1205-1217, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815697

RESUMO

BACKGROUND: Current therapies to effectively treat long-bone defects and extensive bone tissue loss remains limited. In this study, we created a new bone substitute by integrating advanced technologies such as structure patterning, controlled release of a bone growth factor and conjugation system for clinically effective bone regeneration. This novel bioactive bone substitute was evaluated for its safety and efficacy using a rabbit ulna model. METHODS: A three dimensional bone patterned cylindrical structure with 1.5 cm in length and 5 mm in diameter was printed using poly(L-lactic acid)(PLLA) as a weight-bearing support and space-filling scaffold. And a bone morphogenetic protein 2 (BMP2) was employed to enhance bone regeneration, and coated to a 3D PLLA using alginate catechol and collagen to prolong the release kinetics. This novel bone substitute (BS)was evaluated for its physico-chemical and biological properties in vitro, and histological analysis and radiographical analysis such as X-ray, CT and micro-CT image analysis were performed to evaluate new bone formation in vivo. RESULTS: The BS possesses an ideal shape and mechanically suitable proeperties for clinical use, with an easy-to-grab and break-resistant design at both ends, 80 ± 10 MPa of compression strength, and BMP2 release for two months. Histological analysis demonstrated the biocompability of BS with minimal inflammation and immune response, and X-ray, CT and micro-CT demonstrated effective new bone formation in rabbit ulna defect model. CONCLUSION: The preclinical study of a novel bioactive bone substitute has shown its safe and effective properties in an animal model suggesting its clinical potential.


Assuntos
Substitutos Ósseos , Animais , Coelhos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Tecidos Suporte/química , Regeneração Óssea , Ulna/patologia , Microtomografia por Raio-X
10.
Comput Biol Med ; 165: 107381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611419

RESUMO

Mechanical environment plays a crucial role in regulating bone regeneration in bone defects. Assessing the mechanobiological behavior of patient-specific orthopedic scaffolds in-silico could help guide optimal scaffold designs, as well as intra- and post-operative strategies to enhance bone regeneration and improve implant longevity. Additively manufactured porous scaffolds, and specifically triply periodic minimal surfaces (TPMS), have shown promising structural properties to act as bone substitutes, yet their ability to induce mechanobiologially-driven bone regeneration has not been elucidated. The aim of this study is to i) explore the bone regeneration potential of TPMS scaffolds made of different stiffness biocompatible materials, to ii) analyze the influence of pre-seeding the scaffolds and increasing the post-operative resting period, and to iii) assess the influence of patient-specific parameters, such as age and mechanosensitivity, on outcomes. To perform this study, an in silico model of a goat tibia is used. The bone ingrowth within the scaffold pores was simulated with a mechano-driven model of bone regeneration. Results showed that the scaffold's architectural properties affect cellular diffusion and strain distribution, resulting in variations in the regenerated bone volume and distribution. The softer material improved the bone ingrowth. An initial resting period improved the bone ingrowth but not enough to reach the scaffold's core. However, this was achieved with the implantation of a pre-seeded scaffold. Physiological parameters like age and health of the patient also influence the bone regeneration outcome, though to a lesser extent than the scaffold design. This analysis demonstrates the importance of the scaffold's geometry and its material, and highlights the potential of using mechanobiological patient-specific models in the design process for bone substitutes.


Assuntos
Substitutos Ósseos , Tecidos Suporte , Humanos , Tecidos Suporte/química , Porosidade , Substitutos Ósseos/química , Regeneração Óssea , Osso e Ossos
11.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446347

RESUMO

Composites of synthetic bone mineral substitutes (BMS) and biodegradable polyesters are of particular interest for bone surgery and orthopedics. Manufacturing of composite scaffolds commonly uses mixing of the BMS with polymer melts. Melt processing requires a high homogeneity of the mixing, and is complicated by BMS-promoted thermal degradation of polymers. In our work, poly(L-lactide) (PLLA) and poly(ε-caprolactone) (PCL) composites reinforced by commercial ß-tricalcium phosphate (ßTCP) or synthesized carbonated hydroxyapatite with hexagonal and plate-like crystallite shapes (hCAp and pCAp, respectively) were fabricated using injection molding. pCAp-based composites showed advanced mechanical and thermal characteristics, and the best set of mechanical characteristics was observed for the PLLA-based composite containing 25 wt% of pCAp. To achieve compatibility of polyesters and pCAp, reactive block copolymers of PLLA or PCL with poly(tert-butyl ethylene phosphate) (C1 and C2, respectively) were introduced to the composite. The formation of a polyester-b-poly(ethylene phosphoric acid) (PEPA) compatibilizer during composite preparation, followed by chemical binding of PEPA with pCAp, have been proved experimentally. The presence of 5 wt% of the compatibilizer provided deeper homogenization of the composite, resulting in a marked increase in strength and moduli as well as a more pronounced nucleation effect during isothermal crystallization. The use of C1 increased the thermal stability of the PLLA-based composite, containing 25 wt% of pCAp. In view of positive impacts of polyester-b-PEPA on composite homogeneity, mechanical characteristics, and thermal stability, polyester-b-PEPA will find application in the further development of composite materials for bone surgery and orthopedics.


Assuntos
Substitutos Ósseos , Poliésteres , Poliésteres/química , Polietileno , Polímeros , Substitutos Ósseos/química , Durapatita , Etilenos , Materiais Biocompatíveis
12.
Biomed Phys Eng Express ; 9(4)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276854

RESUMO

Artificial bone substitutes have been developed using various biomaterials for use in medicine. Silk fibroin (SF) displays excellent mechanical properties and cell compatibility. Nonetheless, the mechanical properties of silk fibroin scaffolds used in artificial bone substitutes are weaker than those of natural bone, and silk fibroin is deficient as an osteogenic agent. This limits their effectiveness in bone tissue engineering. We added nano-hydroxyapatite (nHAp) particles to an existing cell-based artificial bone substitute with a silk fibroin scaffold, which will improve its mechanical properties and osteogenic efficacy, leading to significant bone regeneration. The mechanical characters of silk fibroin modifying with nHAp were measured by Atomic Force Microscopy Analysis, dispersive x-ray spectroscopy, Porosity measurement, and Microcomputed Tomography. The proliferation and toxicity of a fibroin/dextran/collagen sponge (FDS) containing nHAp were evaluatedin vitro, and its osteogenic efficacy was evaluated using nude mouse and rabbit radius defect models. The defect area was repaired and showed callus formation of new bone in the rabbit radius defect models of the nHAp-FDS-treated group, whereas the defect area was unchanged in the FDS-treated group. The nHAp-FDS manufactured in this study showed significant bone regeneration owing to the synergistic effects of the components, such as those due to the broad range of pore sizes in the sponge and protein adsorbability of the nHAp, which could be suggested as a better supportive material for bone tissue engineering.


Assuntos
Substitutos Ósseos , Fibroínas , Camundongos , Animais , Coelhos , Materiais Biocompatíveis/química , Fibroínas/química , Substitutos Ósseos/química , Microtomografia por Raio-X
13.
J Mater Sci Mater Med ; 34(6): 27, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204535

RESUMO

The present study aimed to evaluate osteogenic potential and biocompatibility of combining biphasic calcium phosphate with zirconia nanoparticles (4Zr TCP/HA) compared to biphasic calcium phosphate (TCP/HA) for reconstruction of induced mandibular defects in dog model. TCP/HA and 4Zr TCP/HA scaffolds were prepared. Morphological, physicochemical, antibacterial, cytocompatibility characterization were tested. In vivo application was performed in 12 dogs where three critical-sized mandibular defects were created in each dog. Bone defects were randomly allocated into: control, TCP/HA, and 4Zr TCP/HA groups. Bone density and bone area percentage were evaluated at 12 weeks using cone-beam computed tomographic, histopathologic, histomorphometric examination. Bone area density was statistically increased (p < 0.001) in TCP/HA and 4Zr TCP/HA groups compared to control group both in sagittal and coronal views. Comparing TCP/HA and 4Zr TCP/HA groups, the increase in bone area density was statistically significant in coronal view (p = 0.002) and sagittal view (p = 0.05). Histopathologic sections of TCP/HA group demonstrated incomplete filling of the defect with osteoid tissue. Doping with zirconia (4Zr TCP/HA group), resulted in statistically significant increase (p < 0.001) in bone formation (as indicated by bone area percentage) and maturation (as confirmed by Masson trichrome staining) compared to TCP/HA group. The newly formed bone was mature and organized with more trabecular thickness and less trabecular space in between. Physicochemical, morphological and bactericidal properties of combining zirconia and TCP/HA were improved. Combining zirconia and TCP/HA resulted in synergistic action with effective osteoinduction, osteoconduction and osteointegration suggesting its suitability to restore damaged bone in clinical practice.


Assuntos
Substitutos Ósseos , Hidroxiapatitas , Animais , Cães , Regeneração Óssea , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Hidroxiapatitas/química , Mandíbula/cirurgia
14.
Sci Rep ; 13(1): 6646, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095138

RESUMO

Bioactive glass (BAG) is a bone substitute that can be used in orthopaedic surgery. Following implantation, the BAG is expected to be replaced by bone via bone growth and gradual degradation of the BAG. However, the hydroxyapatite mineral forming on BAG resembles bone mineral, not providing sufficient contrast to distinguish the two in X-ray images. In this study, we co-registered coded-excitation scanning acoustic microscopy (CESAM), scanning white light interferometry (SWLI), and scanning electron microscopy with elemental analysis (Energy Dispersive X-ray Spectroscopy) (SEM-EDX) to investigate the bone growth and BAG reactions on a micron scale in a rabbit bone ex vivo. The acoustic impedance map recorded by the CESAM provides high elasticity-associated contrast to study materials and their combinations, while simultaneously producing a topography map of the sample. The acoustic impedance map correlated with the elemental analysis from SEM-EDX. SWLI also produces a topography map, but with higher resolution than CESAM. The two topography maps (CESAM and SWLI) were in good agreement. Furthermore, using information from both maps simultaneously produced by the CESAM (acoustic impedance and topography) allowed determining regions-of-interest related to bone formation around the BAG with greater ease than from either map alone. CESAM is therefore a promising tool for evaluating the degradation of bone substitutes and the bone healing process ex vivo.


Assuntos
Substitutos Ósseos , Microscopia Acústica , Animais , Coelhos , Substitutos Ósseos/química , Vidro/química , Osteogênese , Interferometria , Microscopia Eletrônica de Varredura
15.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983073

RESUMO

The early phase of bone healing is a complex and poorly understood process. With additive manufacturing, we can generate a specific and customizable library of bone substitutes to explore this phase. In this study, we produced tricalcium phosphate-based scaffolds with microarchitectures composed of filaments of 0.50 mm in diameter, named Fil050G, and 1.25 mm named Fil125G, respectively. The implants were removed after only 10 days in vivo followed by RNA sequencing (RNAseq) and histological analysis. RNAseq results revealed upregulation of adaptive immune response, regulation of cell adhesion, and cell migration-related genes in both of our two constructs. However, significant overexpression of genes linked to angiogenesis, regulation of cell differentiation, ossification, and bone development was observed solely in Fil050G scaffolds. Moreover, quantitative immunohistochemistry of structures positive for laminin revealed a significantly higher number of blood vessels in Fil050G samples. Furthermore, µCT detected a higher amount of mineralized tissue in Fil050G samples suggesting a superior osteoconductive potential. Hence, different filament diameters and distances in bone substitutes significantly influence angiogenesis and regulation of cell differentiation involved in the early phase of bone regeneration, which precedes osteoconductivity and bony bridging seen in later phases and as consequence, impacts the overall clinical outcome.


Assuntos
Substitutos Ósseos , Tecidos Suporte , Tecidos Suporte/química , Substitutos Ósseos/química , Transcriptoma , Osso e Ossos , Osteogênese/genética , Regeneração Óssea/genética , Diferenciação Celular/genética , Fosfatos de Cálcio/farmacologia , Impressão Tridimensional
16.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835168

RESUMO

Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.


Assuntos
Materiais Biomiméticos , Substitutos Ósseos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Osso e Ossos , Colágeno/química , Materiais Biomiméticos/química , Regeneração Óssea , Substitutos Ósseos/química , Materiais Biocompatíveis/química
17.
J Biomed Mater Res B Appl Biomater ; 111(6): 1207-1223, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36718607

RESUMO

Cuttlebone (CB) is a marine waste-derived biomaterial and a rich source of calcium carbonate for the biosynthesis of the calcium phosphate (CaP) particles. The current study aimed to synthesize CB derived biphasic calcium phosphate (CB-BCP) and investigate biological activity of the CB-CaP: hydroxyapatite (CB-HA), beta-tricalcium phosphate (CB-b-TCP) and biphasic 60:40 (w/w) HA/b-TCP (CB-BCP) with the human dental pulp stem cells (hDPSCs). The particles were synthesized using solid state reactions under mild condition and properties of the particles were compared with a commercial BCP as a reference material. Morphology, particle size, physicochemical properties, mineral contents, and the ion released patterns of the particles were examined. Then the particle/cell interaction, cell cytotoxicity and osteogenic property of the particles were investigated in the direct and indirect cell culture models. It was found that an average particles size of the CB-HA was 304.73 ± 4.19 nm, CB-b-TCP, 503.17 ± 23.06 nm and CB-BCP, 1394.67 ± 168.19 nm. The physicochemical characteristics of the CB-CaP were consistent with the HA, b-TCP and BCP. The highest level of calcium (Ca) was found in the mineral contents and the preincubated medium of the CB-BCP and traces of fluoride, magnesium, strontium, and zinc were identified in the CB-CaP. The cell cytotoxicity and osteogenic property of the particles were dose dependent. The particles adhered on cell surface and were internalized into the cell cytoplasm. The CB-BCP and CB-HA indirectly and directly promote osteoblastic differentiations of the hDPSCs in stronger levels than other groups. The CB-BCP and CB-HA were potential bioactive bone substitute materials.


Assuntos
Substitutos Ósseos , Humanos , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Hidroxiapatitas/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química
18.
ACS Biomater Sci Eng ; 9(2): 918-931, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700921

RESUMO

Hydroxyapatite (HA) has been commonly used as an alternative bone substitute. But it has drawbacks, such as poor degradation and limited osteogenesis. Low-crystalline carbonated hydroxyapatite (L-CHA), which has greater biodegradability than HA, is suggested as one of the main components of bone minerals, but the exact mechanism behind the roles of carbonate substituted in biological behaviors of low-crystalline HA is still a mystery. In this study, L-CHAs with different carbonate contents were prepared, and the effects of the content on the physicochemical properties, in vitro cytological responses, and in vivo bone defects repair effects of L-CHAs were investigated. The results demonstrated that CO32- had successfully entered the lattice structure of L-CHAs with a maximum content of 9.2 wt %. Both low-crystalline undoped HA (L-HA) and L-CHAs were nanocrystalline (20-30 nm) with significantly higher specific surface areas, protein adsorption capacities, and biodegradability compared to high-crystalline HA (H-HA) with submicron crystalline size (200-400 nm). Besides, the amounts of the adsorbed protein and released Ca2+ ions increased in a carbonate-content-dependent manner. Compared to L-HA and H-HA, L-CHAs promoted the adhesion and proliferation of bone marrow mesenchymal stem cells and significantly upregulated the levels of alkaline phosphatase (ALP) activity and the expression of osteogenesis-related genes. In addition, L-CHA-9 not only showed a faster biodegradation rate but also effectively promoted bone regeneration when implanted in the critical-sized bone defects of rabbit femora. This study provided evidence for the development of L-CHA as a promising biodegradable and bioactive material with great osteoconductivity and osteogenic capability with respect to conventional HA.


Assuntos
Substitutos Ósseos , Durapatita , Animais , Coelhos , Durapatita/farmacologia , Durapatita/química , Regeneração Óssea , Osteogênese/fisiologia , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Carbonatos/farmacologia , Carbonatos/química
19.
J Biomed Mater Res A ; 111(3): 367-377, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269049

RESUMO

Use of bioresorbable artificial bone substitutes is anticipated for bone augmentation in dental implant surgery because they are relatively economical and uniform in quality compared to heterogeneous bone. In this study, a new shapable, rubbery, bioresorbable bone substitute was developed. The material was prepared by ultrasonically dispersing hydroxyapatite (HA) particles throughout a poly (caprolactone-co-lactide) (PCLLA) rubbery matrix. Physiochemical properties of the bone substitute including its composition, deformability, anti-collapse ability, degradation behavior, and in vitro and in vivo osteogenic ability were evaluated. Results revealed that HA/PCLLA, which consists of homogeneously dispersed HA particles and a rubbery matrix composed of PCLLA, possesses a deformable capacity. The result of the mass retention rate of the material indicated an excellent durability in an aqueous environment. Further, the effects of HA/PCLLA on cell functions and bone-regenerated performance were evaluated in vitro and in vivo. The results showed that HA/PCLLA had enhanced proliferative capacity, and ability to undergo osteogenic differentiation and mineralization in vitro. It was also found that HA/PCLLA had an appropriate degradation rate to induce consecutive new bone formation without collapse at the early stage in vivo, as well as the ability to maintain the contour of the bone-grafting area, which is comparable to the deproteinized bovine bone mineral. These results indicated that HA/PCLLA is a promising bioresorbable bone substitute with properties that meet clinical requirements, including deformability, resistance to collapse in an aqueous environment, appropriate early-stage degradation rate, biocompatibility, osteogenic bioactivity and the capacity to regenerate bone tissue with favorable contour.


Assuntos
Substitutos Ósseos , Durapatita , Animais , Bovinos , Durapatita/farmacologia , Durapatita/química , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Osteogênese , Implantes Absorvíveis , Poliésteres/farmacologia , Poliésteres/química
20.
J Biomed Mater Res B Appl Biomater ; 111(2): 382-391, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053824

RESUMO

Calcium sulfate, an injectable and biodegradable bone-void filler, is widely used in orthopedic surgery. Based on clinical experience, bone-defect substitutes can also serve as vehicles for the delivery of drugs, for example, antibiotics, to prevent or to treat infections such as osteomyelitis. However, antibiotic additions change the characteristics of calcium sulfate cement. Moreover, high-dose antibiotics may also be toxic to bony tissues. Accordingly, cefazolin at varying weight ratios was added to calcium sulfate samples and characterized in vitro. The results revealed that cefazolin changed the hydration reaction and prolonged the initial setting times of calcium sulfate bone cement. For the crystalline structure identification, X-ray diffractometer revealed that cefazolin additive resulted in the decrease of peak intensity corresponding to calcium sulfate dihydrate which implying incomplete phase conversion of calcium sulfate hemihydrate. In addition, scanning electron microscope inspection exhibited cefazolin changed the morphology and size of the crystals greatly. A relatively higher amount of cefazolin additive caused a faster degradation and a lower compressive strength of calcium sulfate compared with those of uploaded samples. Furthermore, the extract of cefazolin-impregnated calcium sulfate impaired cell viability, and caused the death of osteoblast-like cells. The results of this study revealed that the cefazolin additives prolonged setting time, impaired mechanical strength, accelerated degradation, and caused cytotoxicity of the calcium sulfate bone-void filler. The aforementioned concerns should be considered during intra-operative applications.


Assuntos
Substitutos Ósseos , Sulfato de Cálcio , Sulfato de Cálcio/farmacologia , Sulfato de Cálcio/química , Cefazolina/farmacologia , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Força Compressiva , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Excipientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...